Honeywell Spectra® HC1000 Fiber
Finally a Fiber specifically designed for increased durability and longer life.

Spectra HC 1000 is a new, state-of-the-art fiber that provides best-in-class bending performance without tradeoffs in other parameters such as abrasion, creep, or tenacity; making it suitable for applications such as offshore platform mooring, deep sea lifting, towing, cranes, and elevators. This improved durability means longer rope life and the ability to create greater value over existing HMPE fiber products, other synthetic fibers, and steel.

Industry Leading Performance

Superior Bending Performance
Spectra® HC fiber has superior bending performance compared to other HMPE fibers in the market. This allows you to use the Spectra® HC fiber for rope applications where repetitive bending has limited the life of synthetic ropes.

BENDING FATIGUE (CBOS)
- Repetitive sample bending when moved in and out of sheave under load
- Metric: Cycles to Failure
Improved Tension Fatigue

Tension fatigue due to fluctuating loads over an extended period of repeated cycles during use results in degradation of the fiber and reduction in the strength of the rope. Spectra® HC fiber with improved fatigue life makes it suitable for various lifting and towing applications.

Better Abrasion Performance

Spectra® HC fiber offers less internal friction for increased rope life and decreased fray. Its resistance to corrosion, UV light damage and many abrasive chemicals make it the ideal fiber for rope applications that require durability and higher strength.

TENSION-TENSION FATIGUE

- Repetitive sample tensioning between low and high load until failure
- Metric: Calculated stress at failure for accumulated cycles (TCLL Stress, gpd)

ABRASION RESISTANCE

- Repetitive sample wear when moved across stationary surface under load
- Metric: Cycles to Failure

SPECTRA HC1000 PHYSICAL PROPERTIES

<table>
<thead>
<tr>
<th>Product</th>
<th>Denier</th>
<th>Dextex</th>
<th>Tenacity (g/d)</th>
<th>Breaking Strength (lbs.)</th>
<th>Modulus (g/den)</th>
<th>Elongation (%)</th>
<th>Density (g/cc)</th>
<th>Filament/tow</th>
<th>Filament (dpf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC1000</td>
<td>1600</td>
<td>1760</td>
<td>38.5</td>
<td>136</td>
<td>1300</td>
<td>3.3</td>
<td>0.97</td>
<td>360</td>
<td>4.4</td>
</tr>
</tbody>
</table>